沒有人會懷疑,量子計算和機器學習是當前最炙手可熱的兩個研究領域。
在量子計算方面,理論和硬件的一個個突破性進展讓人們看到大規(guī)模通用量子計算機的腳步越來越近。
在機器學習方面,以人工神經(jīng)網(wǎng)絡為代表的方法在視覺、語音、自然語言理解、游戲等應用領域中有了很大的性能提升。三位深度學習領域專家獲得2019年圖靈獎,更是被評論為“意味著AI復興元年的到來”。
當量子計算和機器學習相遇,會碰撞出什么火花?“總的來看,這是一個還處于早期探索,未來有很大發(fā)展空間可以期待的領域?!?騰訊杰出科學家、騰訊量子實驗室負責人張勝譽評價道。
兩者并非“油和水”的混合
早在上世紀90年代,威奇塔州立大學的物理學教授伊麗莎白·貝爾曼就開始研究量子物理與人工智能的結合,而在當時,神經(jīng)網(wǎng)絡還堪稱是特立獨行的技術。大多數(shù)人認為這是在把油和水進行混合。她回憶說:“我花了很長時間才把論文出版。與神經(jīng)網(wǎng)絡相關的期刊會說,‘量子力學是什么?’,而物理期刊會說,‘神經(jīng)網(wǎng)絡是什么?’”
但隨著量子計算和機器學習在各自領域的進展,二者的結合似乎水到渠成。
神經(jīng)網(wǎng)絡和其他機器學習系統(tǒng)已成為人工智能時代的核心技術。具備機器學習能力的人工智能在某些方面的能力遠超人類,不僅在國際象棋和數(shù)據(jù)挖掘等方面表現(xiàn)出眾,而且在人類大腦所擅長的面部識別、語言翻譯等方面進展迅速。通過后臺的強大算力,這些系統(tǒng)的價值不斷凸顯。
但同時,傳統(tǒng)計算機數(shù)據(jù)處理能力接近極限,而數(shù)據(jù)卻在不斷增長。正因此,業(yè)界展開了激烈競爭,看誰能率先推出一款比現(xiàn)有計算機更強大的量子計算機,來處理日益龐大的數(shù)據(jù)。
“機器學習技術的進步有賴于計算能力的提高,量子計算機的計算能力肯定比現(xiàn)有機器強太多,它必然能推動機器學習的發(fā)展,這就好比,一個腦子轉得很快、更聰明的人比一個反應慢的人處理問題更快更好?!?中國科學技術大學中科院量子信息重點實驗室研究員韓正甫告訴科技日報記者,機器學習可能會在很短的時間內(nèi)處理超出當前能力的復雜問題。
北京國雙科技有限公司(以下簡稱“國雙”)首席技術官劉激揚在接受科技日報記者采訪時則表示,隨著產(chǎn)業(yè)數(shù)據(jù)規(guī)模的爆炸式增長,深度學習模型網(wǎng)絡參數(shù)的不斷擴增,現(xiàn)有的計算結構及框架,面對海量的數(shù)據(jù)規(guī)模及深層網(wǎng)絡結構,處理分析所需的時間、硬件成本非常高,因此,亟須更為高效的解決方案。
強強聯(lián)合的化學反應
劉激揚說,正因此,很多研究機構及科技公司都將目光集中到了量子計算領域。
“量子計算的獨特性質,使得它無論是在數(shù)據(jù)處理能力還是數(shù)據(jù)存儲能力上,在理論上都遠超經(jīng)典計算,所以若將其應用到機器學習中,不僅可以解決目前機器學習算法處理海量大數(shù)據(jù)時計算效率低等問題,甚至可能改變整個機器學習領域。”劉激揚說,機器學習和量子計算若結合,一方面是希望利用量子計算優(yōu)良的數(shù)據(jù)處理能力,解決機器學習運算效率低的問題;另一方面探索使用量子力學的性質,開發(fā)更加智能的機器學習算法。
劉激揚具體分析道,機器學習與量子計算的結合,主要有以下幾種形式:由于量子計算能夠同時執(zhí)行大量、復雜的計算過程,所以通過結合它可以使某些在傳統(tǒng)機器學習中不可計算的問題變?yōu)榭赡? 從而大幅降低機器學習算法的計算復雜度;利用量子理論的并行性等加速特點直接與某些機器學習算法深度結合,從而可以催生出一批全新的量子機器學習模型,這些模型能夠實現(xiàn)更高的計算效率;還可以利用機器學習算法,解決量子物理學領域中的一些難以分析的問題,如量子多體物理問題、 量子優(yōu)化控制等。
“近十年涌現(xiàn)出大量量子技術和機器學習結合的研究,主要在用經(jīng)典機器學習解釋和幫助量子力學的研究,也有不少對經(jīng)典機器學習設計高效量子算法的研究,還有少量其他方面,如量子啟發(fā)式機器學習、用量子理論幫助理解機器學習中的現(xiàn)象等,大家得到了形式豐富的結果?!睆垊僮u告訴科技日報記者。
張勝譽與團隊近日系統(tǒng)梳理了量子機器學習的發(fā)展,文章發(fā)表于《國家科學評論》2019年第1期出版的“量子計算”專題。
國內(nèi)企業(yè)積極部署
“雖然進展喜人,但我們也應該注意到目前機器學習領域的很多結果在嚴格性、問題基礎性和未來實用性上都還有很大的提升空間??偟膩砜?,這是一個還處于早期探索,未來有很大發(fā)展空間可以期待的領域?!睆垊僮u認為。
“量子機器學習的更多應用還須等到可以實現(xiàn)大規(guī)模量子信息存儲,以及有成熟的量子計算機出現(xiàn)才行?!表n正甫說,但事實上,量子計算機的概念1980年代提出,投入研發(fā)20年,迄今還沒有一臺真正走出實驗室。
劉激揚也表示,量子計算機是真正實現(xiàn)量子機器學習算法實用化的重要硬件基礎,要想將量子機器學習算法應用于實際的數(shù)據(jù)分析和處理任務中,需要將數(shù)據(jù)轉化為量子態(tài),上傳至計算機中,進行存儲、處理并導出,這就需要研制出具有成百上千超導量子比特的量子計算機,“在通用量子計算機建造成功之前,量子機器學習算法則很難在實際應用中展現(xiàn)出其數(shù)據(jù)處理方面的強大能力。”
張勝譽分析道,由于硬件資源的受限,量子機器學習的驗證和發(fā)展確實有很多瓶頸?!袄碚撋峡梢赃M行更多量子加速的研究,實踐上也可以結合硬件不停推進對物理化學中基本問題的理解?!彼J為,這個領域最終的突破,可能需要理論和硬件手拉手往前走。
在劉激揚看來,量子機器學習還缺乏完備的理論框架及實際驗證。“由于量子機器學習只能在量子狀態(tài)下進行,而當前由經(jīng)典信息到量子信息的轉換研究較少,還有很多問題未解決?!?/p>
“我們還不能從基礎理論角度來闡述量子機器學習算法的優(yōu)勢?!眲⒓P說,目前仍不能證明某個量子機器算法的性能比所有的經(jīng)典機器學習算法都好, 因為沒有找到同樣復雜度的經(jīng)典算法,但這并不代表這樣的經(jīng)典算法不存在,所以還有待進一步研究證明。
但是,在業(yè)界大佬們看來,量子機器學習是個充滿無限遐想的領域?!吧疃葘W習帶來的變化已經(jīng)遠超十年前的估計,量子計算機對量子多體系統(tǒng)的模擬會給我們帶來哪些顛覆性的認識,量子與機器學習結合會對我們自身和自然界的理解和改變帶來哪些影響,這里有非常大的想象空間。”張勝譽說。
張勝譽介紹道,騰訊一直持續(xù)關注量子機器學習的方向。“我們團隊和法國的合作者Iordanis Kerenidis一起設計了第一個可證明有加速的神經(jīng)網(wǎng)絡量子算法,團隊在機器學習對量子物理和量子化學的理解上也在不停向前探索。我們希望能在這個令人期待的領域中作出一些踏實的貢獻?!?/p>
在機器學習領域深耕多年的國雙,也一直關注著量子機器學習等相關領域的最新動態(tài)。劉激揚說,目前,該公司的產(chǎn)業(yè)人工智能平臺搭載包括機器學習、知識圖譜、自然語言處理等人工智能技術與算法,在數(shù)字營銷、司法大數(shù)據(jù)、工業(yè)互聯(lián)網(wǎng)等領域都積累了豐富的實踐經(jīng)驗及成功案例,切實的幫助客戶提升生產(chǎn)運營效率。
“除了持續(xù)推動‘AI+行業(yè)解決方案’服務模式落地外,我們會跟進量子機器學習的進展并積極部署,思索如何將這些新興技術融入國雙獨有的產(chǎn)業(yè)人工智能平臺,致力落實用技術改變產(chǎn)業(yè),為客戶實現(xiàn)智能化轉型而努力?!眲⒓P說。(記者 操秀英)